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T h e  h u m a n  p r o g e s t e r o n e  r e c e p t o r  ( h P R )  ex i s t s  as two  d i s t i n c t  m o l e c u l a r  f o r m s  in m o s t  cells,  h P R - A  
a n d  -B.  T h e s e  r e c e p t o r  i s o f o r m s  d i s p l a y  d i s t i n c t  b i o l o g i c a l  f u n c t i o n s  a n d  d e m o n s t r a t e  a cell  a n d  
p r o m o t e r  spec i f i c  a b i l i t y  to  r e g u l a t e  gene  t r a n s c r i p t i o n .  In  c e l l u l a r  c o n t e x t s  w h e r e  h P R - A  is 
t r a n s c r i p t i o n a l l y  i n a c t i v e  i t  c a n  f u n c t i o n  as a l i g a n d  d e p e n d e n t  i n h i b i t o r  o f  m i n e r a l o c o r t i c o i d  
r e c e p t o r  ( M R )  t r a n s c r i p t i o n a l  a c t i v i t y .  I n h i b i t i o n  o c c u r s  b y  a n o n - c o m p e t i t i v e  m e c h a n i s m  as d i r e c t  
b i n d i n g  to  M R  is n o t  r e q u i r e d .  I n t e r e s t i n g l y ,  P R  a g o n i s t s  d i f f e r  in  t h e i r  a b i l i t y  to  f a c i l i t a t e  t he  
i n h i b i t o r y  f u n c t i o n  o f  h P R - A ,  s u g g e s t i n g  t h a t  a spec i f i c  r e c e p t o r  c o n f o r m a t i o n  m a y  be  p r e f e r r e d  f o r  
th i s  a c t i v i t y .  T h o s e  c o m p o u n d s  d e r i v e d  f r o m  1 9 - n o r - t e s t o s t e r o n e  a r e  t he  m o s t  e f fec t ive .  T h e  
a n t i p r o g e s t i n s  RU486,  ZK98299 a n d  ZKl12993 a r e  e f fec t ive  M R  a n t a g o n i s t s  in t he  p r e s e n c e  o f  
c o e x p r e s s e d  h P R - A .  T h e  m e c h a n i s m  o f  h P R - A  m e d i a t e d  i n h i b i t i o n  o f  M R  t r a n s c r i p t i o n a l  a c t i v i t y  
is u n k n o w n .  W e  p r o p o s e  t h a t  i n h i b i t i o n  r e s u l t s  f r o m  a c o m p e t i t i o n  o f  h P R - A  w i t h  M R  f o r  a c o m m o n  
t r a n s c r i p t i o n  f a c t o r  a n d  t h a t  t h e  a s s o c i a t i o n  o f  h P R - A  w i t h  th i s  f a c t o r  is n o t  t r a n s c r i p t i o n a l l y  
p r o d u c t i v e .  
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I N T R O D U C T I O N  

Progesterone is a key hormone central to the regulation 
of  reproductive function in the body [ 1 ]. Its mechanism 
of action is similar to other nuclear hormones  in that it 
utilizes a specific intracellular receptor which trans- 
duces its chemical message to the nuclei of  target cells. 
T h e  interaction of progesterone with its specific recep- 
tor induces allosteric changes in receptor structure, 
promotes  phosphorylat ion and displaces tightly bound 
heat-shock proteins which act to repress receptor func- 
tion. These  events ult imately lead to an association of 
the progesterone receptor (PR) with specific D N A  
elements within the regulatory sequences of  progester-  
one responsive target genes [2-4]. T h e  resulting 
changes in cellular phenotype are a consequence of  the 
combinatorial  effects of the positive or negative regu- 
lation of multiple genes in target tissues. 

T h e  human  progesterone receptor (hPR) is unique 
among the classic steroid hormone receptors as it is 
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present in the cell as two distinct molecular forms, 
hPR-A and -B [5]. Controversy exists as to the occur- 
rence of multiple forms of PR in all species, but  to date 
two PR isoforms have been identified in the reproduc-  
tive organs of  human  [5], rat [6], mouse [7] and chicken 
[8]. In  humans,  both PR isoforms are encoded by the 
same gene and differ only in that the amino terminus 
of hPR-B extends 164 amino acids longer than hPR-A 
[9]. Recent evidence has suggested that both of  these 
receptors arise f rom alternate initiation of transcription 
f rom two promoters  within the same gene [9]. Interest-  
ingly, in chicken, both  forms of PR are also derived 
f rom a single gene. However ,  unlike hPR, both chicken 
PRs (cPR) arise by alternate initiation of translation 
from a single m R N A  [10]. T h e  existence of  complex 
systems regulating product ion of these proteins in 
species as diverse as chickens and humans  suggests that 
both protein forms are critically important  for manifes- 
tation of  progesterone activity. 

A genetic analysis of  the functional domains of  hPR 
has revealed that the structural elements required for 
D N A  binding, hormone binding, dimerization, nuclear 
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localization, and transactivation (transactivation acti- 
vation function 1 and 2; TAFs )  are wholly contained 
within the region common to hPR-A and -B. Recently, 
however, it has been shown that a region in the 
hPR-B-specific 164 amino acids is required for maxi-  
mal activity of  the amino-terminal  TAF1 function in 
some promoter  contexts [9,11]. This  information 
suggested that TAF1 in PR-A and -B are functionally 
different. In addition, it is suggested that genes which 
were predominant ly  under  T A F 2  control could be 
regulated by both PR-A and -B, whereas those genes 
that were predominant ly  regulated by TAF1 would 
demonstrate  a differential responsiveness to hPR-A and 
-B. In support  of this we and others have shown that 
progesterone receptor A and B isoforms do in fact 
display a promoter -  and cell-specific ability to func- 
tion as transcriptional regulators ([12, 13, 18] and 
Wen,  D. X. and McDonnel l ,  D. P., unpublished 
data). In particular, hPR-B was transcriptionally 
active in most  cellular contexts. However,  hPR-A 
transcriptional activity was more restricted. 

We were intrigued by the fact that even though 
hPR-A transcriptional activity was context restricted 
its product ion was tightly regulated in most  cells. I t  
was possible that in cells where PR-A was transcrip- 
tionally inactive that it had additional functional roles 
that previously were unexplored. Indeed, production of 
two transcriptional regulators from a common gene is 
not unique. Recent studies have indicated that the 
transcription factors LAP [14], m T F E 3  [15], and thy- 
roid hormone receptor-g [16], all encoded by single 
genes, give rise to two distinct proteins of  different 
molecular weight. In all these cases it was observed that 
the smaller isoform functioned as a t ransdominant  
inhibitor of the transcriptional activity of the larger 
protein [17]. We have shown previously that in cells 
where hPR-A is transcriptionally inactive it functions 
as a hormone-dependent  inhibitor of glucocorticoid 
(GR),  progesterone-B and androgen receptor (AR) 
transcriptional activity, whereas it had no effect on 
vitamin D receptor mediated gene transcription [18]. 
In order to determine if all members  of  the G R  
subfamily of  receptors were modulated in a similar 
manner  we examined the role of hPR-A as a modulator  
of  mineralocorticoid receptor (MR) function. 

M A T E R I A L S  A N D  M E T H O D S  

Chemicals 

Restriction and modification enzymes were obtained 
from Promega Biotec (Madison, WI) ,  Boehringer 
Mannhe im (Indianapolis,  IN),  or New England Bio- 
labs (Bethesda, MD) .  P C R  reagents were obtained 
from Perkin Elmer  Cetus (Norwalk, CT) .  Chemicals 
were purchased from Sigma (St Louis, MO).  The  
antiprogestins ZK112993 and ZK98299 were a gener- 
ous gift f rom Dr  David Henderson (Schering-AG, 
Berlin). 

Cell culture 

Monkey kidney CV-1 fibroblasts were routinely 
maintained in Dulbecco 's  modified Eagle's medium 
( D M E M )  (Biowittaker, M D )  supplemented with 
10% fetal bovine serum (FBS, obtained f rom Hyclone 
Laboratories,  UT) .  

Transient transfection assays 

Cells were seeded in 12-well, 96-well or 10 cm tissue 
culture plates. D N A  was introduced into cells using 
calcium phosphate coprecipitation [19]. 2 0 # g  of 
D N A / m l  of transfection buffer were used in each 
transfection reaction. In  this mix, the concentration of 
the luciferase plasmids and that of the internal control 
plasmid ( p C H l l 0 ,  which contains the gene for the 
fl-galactosidase enzyme) remained constant (5 pg  of 
each plasmid DNA),  while the receptor plasmid con- 
centration varied as indicated for each experiment.  
Different amounts of receptor parental plasmid, pSV2-  
neo was included to keep constant the total amount  of  
the SV40 enhancer containing vectors, p G E M 4  plas- 
mid D N A  was added to balance the total D N A  concen- 
tration to 20#g/react ion.  For the 96-well plate 
experiments,  transfections were per formed on a 
Biomek 1000 Automated Laboratory  Workstat ion 
(Beckman, Fullerton, CA) and cells were incubated 
with the precipitate for 6 h. Cells were washed with 
PBS and incubated for 40 h with or without hormones 
as indicated in the text. Cell extracts were prepared as 
described previously [22] and assayed for luciferase and 
fl-galactosidase activities. 

Plasmid constructions 

The  construction of all the plasmids used in this 
paper  with the exception of p R S T 7 h P R - A  and -B have 
been described previously [18-22]. These  plasmids 
were constructed as follows. The  plasmids YepPR-B 
and -A891, containing the full length hPR-B and a 
truncated hPR-A were cleaved with BamHI .  This  
released the PR-A and -A891 DNA' s ,  respectively. 
These fragments were cloned into the cognate site of  
the p R S T 7  expression vector [21], giving rise to 
p R S T 7 h P R - A  and -A891. 

T h e  construct pRST7hPR-B891  was derived as fol- 
lows; YephPR-B891 was digested with AflII  and KpnI .  
The  3 kb fragment  arising f rom this digestion was 
purified and modified with T4  D N A  polymerase and 
digested with BamHI .  T h e  resulting fragments (0.2 
and 2.8 kb) were cloned into an E c o R V / B a m H I  pre- 
pared p R S T 7  vector. The  plasmid p R S T 7 h P R - B  was 
constructed by replacing the B s t E I I / K p n I  fragment  of  
pRST7hPR-B891  with the analogous fragment  from 
p R S T 7 h P R - A .  All the constructions were sequenced 
for validation. 

R E S U L T S  

h P R - A  is a transdominant repressor of h P R - B  function 

We have shown previously that the transcriptional 
activity of the hPR-A and -B was dependent  on cell 
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Fig. 1. The h P R - A  funct ions  as a t r a n s d o m i n a n t  repressor  o f h P R - B  function.  CV-1 monkey kidney cel ls  were  
trans ient ly  transfec ted  with (A) 0.25/~g p h P R - B  alone  or in the presence  of increas ing  concentrat ions  of  
p h P R - A  (as indicated)  together  with 5 pg of  an MMTV-LUC rep o r t e r  p la smid  or (B) 5/~g of  pRST7hPR-B 
alone or in the presence  of  increas ing  concentrat ions  of pRST7hPR-A together  with 5 pg of  the MMTV 
reporter .  Cells  were  treated with 10 -TM proges te rone  as indicated and assayed  for ~ -ga lac tos idase  and 
luc i ferase  (LUC) activity (LUC activity was no rma l i zed  for  ~-galactosidase  activity). The no rma l i zed  LUC 
activity was ca lculated  by dividing the raw luciferase activity ( x 104 units) for each point  by th e / l - ga lac to s id as e  
activi ty [(A4t 5 nm X 10 5 ] / t ime  in minutes )  at t h a t p o i n t .  A representat ive  e x p e r i m e n t  is deta i led  above. Each  data  
point  shown represents  the average of t r ip l ica te  de t e rmina t ions  of  the transcr ipt ional  act iv i ty  under  a given 

expe r imen ta l  condit ion.  

type and promoter context [18]. Additionally, it was 
shown that in cellular contexts where hPR-A was 
transcriptionally inactive it functioned as a transdomi- 
nant inhibitor of hPR-B, GR and AR function [18]. In 
order to extend and confirm these results we estab- 
lished two independent assays in the PR negative CV-1 
cell line. One assay used the SV40 promoter to direct 
the synthesis of hPR-A and -B [Fig. I(A)]*, whereas 
the other used the Rous Sarcoma Virus promoter 
(RSV) [Fig. I(B)]. In both of these cases it is clear that 
ligand activated hPR-B was an effective regulator of the 
mouse mammary tumor virus (MMTV)  promoter. In 
the presence of increasing concentrations of hPR-A the 
transcriptional activity of hPR-B in both assays was 
attenuated. Hormone binding and Western im- 
munoblot  analysis confirmed that half maximal inhi- 
bition occurred when hPR-A expression was 20-25% 
that of hPR-B. These data suggest that this inhibitory 
event is occurring sub-stoichiometrically and that hPR- 
A's biologic activity is "catalytic" in nature. It is clear 
from these results that the modulation of hPR-B by -A 
occurs independently of the vector systems used to 
produce the effector molecules. These results confirm 
that in a cellular context where hPR-A is transcription- 
ally inactive it can function as a transdominant inhibi- 
tor of hPR-B mediated gene transcription. 

Reconstitution of a mineralocorticoid responsive tran- 
scription system in mammalian cells 

We wished to determine if the transdominant role 
of hPR-A as a modulator of  AR, GR, and hPR-B 

*The data presented in Fig. I(A) have been presented before in 
another format [18]. It is included in this manuscript as a reference 
to quantitate inhibition. 

extended to MR. To  accomplish this we reconstituted 
a mineralocorticoid responsive transcription unit in 
M R  negative CV-1 cells. A vector (pRShMR) directing 
the synthesis of authentic M R  was transfected into 
CV-1 cells and its ability to regulate the M M T V  
promoter in a ligand-dependent manner was measured. 
The  results are shown in Fig. 2(A). In this assay M R  
functioned as an effective regulator of M M T V  gene 
transcription in the presence of aldosterone, demon- 
strating an ECs0 of 1 × 10-1°M. In the presence of 
cotransfected hPR-A there was a minor attenuation of 
M R  activity at the highest concentrations of aldoster- 
one. However, at concentrations above 10-SM aldos- 
terone it is clear that aldosterone interacts directly with 
hPR-A leading to a stimulation of the inhibitory ac- 
tivity of hPR-A. The fidelity of the reconstituted assay 
was confirmed by demonstrating that the M R  antagon- 
ist, spironolactone, was capable of inhibiting aldoster- 
one activation of MR. The  antimineralocorticoid 
activity of spironolactone was unaffected by coexpres- 
sion of hPR-A. These results suggest that M R  func- 
tions as a ligand-dependent activator of M M T V  gene 
transcription and that coexpresssion of hPR-A in the 
absence of a PR ligand has minimal effects on MR 
activity. 

h P R - A  functions as a hormone-dependent inhibitor of 
M R  transcriptional activity 

Previously, we have shown that PR ligands derived 
from 19-nortestosterone are effective in inducing the 
inhibitory activity of hPR-A [23]. For this reason we 
examined the ability of norethynodrel and norethin- 
drone to modulate M R  in the presence and absence of  
transfected hPR-A. The results are shown in Fig. 3. In 
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Fig. 2. The MR functons as a hormone-dependent transcrip- 
tion factor in transfected mammal ian  cells. Monkey kidney 
cells (CV-1) were transiently transfected with vectors ex- 
pressing human MR alone (pRShMR) or in combination with 
vectors expressing phPR-A as indicated. The transcriptional 
activity in these setups was measured following the addition 
of (A) increasing concentrations of aldosterone or (B) in- 
creasing concentrations of the mineralocorticoid antagonist 
spironolactone in the presence of a saturating concentration 
of aldosterone (10-gM). Treated cells were harvested and 
assayed for ~-galactosidase and luciferase (LUC) activity 
(LUC activity was normalized for l$-galactosidase activity). 
The normalized LUC activity was calculated as in Fig. 1. A 
representative experiment is detailed above. Each data point 
shown represents the average of triplicate determinations 
of the transcriptional activity under a given experimental 

condition. 

this assay M R  t ranscr ip t iona l  activity was induced  by 
1 0 - 9 M  aldosterone.  We  then  added increas ing concen-  

t rat ions of the test c o m p o u n d s  in the presence or 
absence of t ransfected h P R - A  and  measured  their  
abil i ty to interfere  with M R  activity. In teres t ingly ,  
these 19-nor- tes tos terone  der ived derivat ives had m i n -  
imal effects on  M R  directly,  however,  they were ex- 
t remely  active as M R  antagonis ts  in the presence of 
hPR-A.  I t  is clear that  cot ransfect ion of h P R - A  in-  
creases the inh ib i to ry  activity of these c o m p o u n d s  by at 
least 3 orders of magni tude .  In  this assay n o r e t h i n d r o n e  
and  nore thynodre l  are equal ly  effective as spi ronolac-  
tone  as ant iminera locor t icoids .  These  data in  combi -  
na t ion  with our  other  pub l i shed  results  indicate  that  
h P R - A  func t ions  as a l i g a n d - d e p e n d e n t  inh ib i to r  of 
all m e m b e r s  of the G R  subfami ly  of in t racel lu lar  

receptors.  I n  addi t ion ,  it suggests that  it is possible to 
modula te  the biological activity of GR,  PR,  AR,  M R  

with l igands that  do no t  compet i t ively  interact  with 
these receptors.  

Antiprogestins exhibit antimineralocorticoid receptor 
activity in cells containing h P R - A  

Clearly,  proges t in  agonists  can inh ib i t  M R  t ran-  
scr ipt ional  activity t h rough  their  in terac t ion  wi th  h P R -  
A. I t  was of interest  therefore to de te rmine  whether  
proges t in  antagonis ts  could func t ion  analogously.  
Specifically, the modu la to ry  activity of RU486 ,  
ZK98299  and  ZK112993  was examined  in the presence 
or absence of t ransfected hPR-A.  T h e  results  of  this 
analysis are shown in Fig. 4. Notab ly ,  none  of these 
ant iproges t ins  had any significant  direct  effects on 
M R  ( < 2 0 %  inh ib i t ion  at 10 - 6M) .  However ,  in the 
presence of t ransfected h P R - A  all three c o m p o u n d s  
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Fig.  3. h P R - A  f u n c t i o n s  as  a h o r m o n e - d e p e n d e n t  i n h i b i t o r  o f  
MR transcriptional activity. Monkey kidney cells (CV-1) were 
transiently transfected alone with a vector expressing human 
MR (pRShMR) or in combination with a vector expressing 
phPR-A. The transcriptional activity of MR in this exper- 
iment was measured following the addition of 10-gM 
aldosterone alone or in combination with increasing concen- 
trations of (A) norethynodrel or (B) norethindrone. The data 
are presented as % activation where the 100% value rep- 
resents maximally activated MR in the presence of 10 -gM 
aldosterone. A representative experiment is detailed above. 
Each data point shown represents the average of triplicate 
determinations of the transcriptional activity under a given 

experimental condition. 
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Fig. 6. PR  agonists  and  antagonis ts  exer t  an t iMR activit ies th rough  a novel P R - A  med i a t ed  mechan i sm.  (A) 
In cells where  MR alone is expressed  in the absence  of hPR-A,  h o r m o n e  act ivat ion of  MR faci l i tates  an 
associat ion of  MR with  a r equ i r ed  " a d a p t e r "  protein .  This in te rac t ion  induces a conformat iona l  change in the 
adap te r  al lowing the complex  to product ive ly  associate with general  t r ansc r ip t ion  appa ra tus  (GTA). When 
h P R - A  is coexpressed  with MR in the presence  of  a PR  l igand (B) a compet i t ion  for the c o m m o n  adap te r  exists. 
MR in the absence of  bound  adap te r  is t r ansc r ip t iona l ly  inactive. In addit ion,  the complex  of  h P R - A  and the 
adap te r  p ro te in  is t ranscr ip t iona l ly  inactive as it does not  induce the conformat iona l  changes in the adap te r  

required  to fit the t r ansc r ip t ion  appara tus .  
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